

Experimental Tissue Resource

(+)

LEADERSHIP & MISSION

Robert Edwards, MD, PhD Wendy Cozen, DO, MPH Director Co-Director

Delia Tifrea, PhD, MBA Manager

ETR supports the research mission across UC Irvine and the campus research community and assists investigators with:

- Tissue procurement
- Tissue processing
- Histopathology interpretation

SERVICES, TECHNOLOGIES & EQUIPMENT

- Fresh and FFPE Tissue Procurement and Interpretive Histopathology Consultation
- Tissue Histology and IHC services
- Mouse Pathology services and consultation on mouse models of human disease
- Biorepository/tissue banking services, including a user-searchable deidentified database of archival tissue

+

EQUIPMENT

Learn more about available state-ofthe-art equipment

INVENTORY

FFPE (Surgical + Biopsy): 328,987 Frozen Tissue: 5.682

SUPPORT PROVIDED (Annual) 65% cancer-related
Clinical trials97
 Individual patients1,348
 Investigator-initiated trials8
 Basic research projects43
 ETR consultation for database,84 IRB, sample collection, protocol review
- TMA10

RESEARCH HIGHLIGHTS

Latin American Health Disparities in Ph-like ALL Healthy + RAG VVVVVV Cance + RAG

CDK8/19 inhibition reverses castration resistance of PCa

IMPACT & KEY METRICS CY2024

TRAINING

æ

- Histology processig: in-person training and observership – 5 hours
- Ventana scanning training 6 hours
- Mouseaorta dissection 3 users 3

hours

 Complete mouse necropsy and tissue processing - 4 hours

FUTURE PLANS

- Build ETR service presence at UCI Health Irvine campus
- CAP accreditation
- Multiplex IHC and IF using Ventana Discovery
- Customized EPIC cohort discovery with automated samples identification and retrieval from sample inventory-greatly expand access to specimens

Internal Advisory Committee

Wendy Cozen, DO, MPH Interim Associate Director Pop Sci & Cancer Control, CFCCC

Sherif Rezk, MD Professor Pathology

Robert Edwards, MD, PhD Director ETR, CFCCC

Jessica Sheldon, CIP Director Human Research Protection

Anand Ganesan, MD, PhD Program Co-Leader BIDD, CFCCC

Angela Fleischman, MD, PhD Program Co-Leader SPT, CFCCC

Edwin Monuki MD, PhD Chair & Professor Pathology

FREQUENCY As needed

FUNCTION

Allocate specimens based on merit and study benefit to enhance cancer-related research at UCI

AUTHORITY

Decision power on research tissue release priority

Services, Technologies & Equipment

Routine Histology Services and Equipment

Leica Peloris Tissue processor, microtome, Leica CM3050 Cryostat, Ventana Discovery automatic stainer

Freezerworks

- -80C and LN2 freezers
- Freezerworks SUMIT biobanking inventory program
- Ventana DP200 high-speed digital slide scanner
- TMA Grand Master- 3DHISTECH

Featured Technology

TMA Grand Master – 3DHISTECH

Available core/block (core diameter)

- **558** (0.6 mm)
- 286 (1 mm)
- 135 (1.5 mm)
- 84 (2 mm)

Feasible for proteomics *nanoString*- GeoMx DSP

Inventory

TISSUE	SURGICAL RESECTIONS FFPE (5 years)	BIOPSIES FFPE (5 years)	FROZEN Tissue
Brain	589 (326)	3,006 (1,297)	644
Colon	2,204 (956)	23,352 (13,546)	259
Pancreas	875 (266)	398 (211)	98
Breast	5,808 (2,505)	1,211 (354)	118
Uterus	899 (547)	237 (99)	219
Ovary, Adnexa	1,671 (712)	206 (77)	280
Prostate	1,858 (602)	377 (239)	735
Kidney	1,180 (422)	169 (78)	295
Bladder	535 (288)	1,308 (513)	29
Lung	285 (130)	177 (133)	36
Total	328,98	7	5,682

CATCHMENT AREA RELEVANCE

Circadian clock disrupts gut microbiome & barrier in CRC

H/Lat

disrupted intestinal circadian rhythms exhibited a significant increase in tumor burden compared to controls Microbiome Alterations: Clock disruption led to notable

changes in gut microbiota composition, including a decrease in beneficial bacteria and an increase in potentially harmful species

Circadian Disruption & CRC Progression: Mice with

- Metabolic Pathway Changes: There was a significant alteration in microbial metabolic pathways, particularly those related to nucleotide and amino acid metabolism
- Impaired Gut Barrier Function: Mice with disrupted clocks showed reduced expression of tight junction proteins, leading to increased intestinal permeability
- Therapeutic Implications: These findings suggest that maintaining circadian rhythm integrity could be crucial for gut health and may offer a potential avenue for colorectal cancer prevention

IMPACT

PUBLICATION

Fellows, Science Advances, 2024 PMC11430476

GRANTS R01CA259370 R01CA244519

The circadian clock is important for maintaining both intestinal permeability and bacterial homeostasis, and these factors could be important for the pathogenesis of CRC

CATCHMENT AREA RELEVANCE

Latin American ancestry linked to high risk and treatment refractory ALL

Ph+-2

- Chromosomal translocations between CRLF2 and IGH occur in over 60% of Ph-like ALL cases
- *CRLF2-IGH* translocations occur at a higher rate in people with Latin American ancestry
- We found that activation-induced cytidine deaminase (AID) is a causal factor in translocations
- Latin American patients with Ph-like ALL have more AIDinduced mutations genome-wide
 Ph-Like-4

Long-Read DNA Sequencing Shows High Level of Genome Instability in Ph-like ALL

	hg38 Genomic Coordinates					
Locus	Ph-Like-4	Ph+-2				
IGH	chr14:105,856,341-105,873,004	chr14:105,856,341-105,873,004				
CRLF2	chrX:1,206,101-1,230,261	No Structural Variant				
BCR	chr22:23,282,759-23,300,199	chr22:23,282,759-23,300,199				
ABL1	No Structural Variant	chr9:130,839,992-130,845,657				
IKZF1	chr7:50,333,391-50,338,511	No Structural Variant				
	chr7:50,297,986-50,323,897	No Structural Variant				
JAK2	chr9:5,085,952-5,104,396	No Structural Variant				
	chr9:5,016,355-5,034,799	No Structural Variant				
CDKN2A	chr9:21,966,752-21,996,324	No Structural Variant				
TCR	chr14:21,942,101-21,956,635	No Structural Variant				

De-Identified Material Collected from ALL Patients, UCI

Sample	Age	Sex	Ethnicity	Genetics/FISH Findings	Source	% Blasts
Ph-Like ALI	1					
Ph-like-1	60	М	Hispanic	CRLF2 and IGH Rearrangement ²	BM	95
Ph-like-2	24	М	Hispanic	CRLF2 and IGH Rearrangement ²	BM	95
Ph-like-3	70	F	Hispanic	CRLF2 and IGH Rearrangement ²	BM	95
Ph-like-4	54	М	Hispanic	CRLF2::IGH ³	PB	90
Ph-like-5	31	F	Hispanic	P2RY8 and CRLF2 Rearrangement ²	BM	62
Ph-like-6	46	F	Hispanic	P2RY8 and CRLF2 Rearrangement ²	BM	50
Ph-like-7	70	М	Hispanic	P2RY8::CRLF24	PB	59
Ph-like-8	26	М	Hispanic	P2RY8 and CRLF2 Rearrangement ²	PB	90
Ph-like-9	29	М	Asian	CRLF2 and IGH Rearrangement ²	BM	56
Ph-like-10	75	М	White	CRLF2 and IGH Rearrangement ²	PB	91
Ph-Positive	ALL					
Ph+-1	64	М	Hispanic	BCR::ABL1	BM	95
Ph+-2	44	М	Hispanic	BCR::ABL1	BM	90
Ph+-3	78	F	Asian	BCR::ABL1	BM	90
Ph+-4	50	F	Asian	BCR::ABL1	BM	90
Ph-Negative	ALL					
ALL-1	48	М	Hispanic	MYC. and KMT2A Rearrangements	PB	73
ALL-2	61	М	Hispanic	KMT2A::AFF1	BM	80
	CR	V _H ◀ LF2		DSB induced by R JH EP Chr. 14 Chr. X/Y	AG	
				AID-induced DS	SB	

PUBLICATION

Rangel, Nature Communications, 2024 PMC11283463

GRANTS R37CA266042* R01CA276470

*Supported research

Demonstration that aberrant, off-target AID activity is a causal factory driving *CRLF2-IGH* translocations in populations with Latin American ancestry (Hispanic and Latino)

CATCHMENT AREA RELEVANCE

CDK8/19 Inhibition Reverses Castration Resistance of PCa

Both Kinases are upregulated in castration-resistance prostate cancer (CRPC)

Tumor Vol. (mm³)

- <u>CDK8/19 Upregulation:</u> CDK8/19 expression is significantly higher in CRPC tumors
- <u>Restoring Androgen Sensitivity:</u> CDK8/19i treatment suppressed tumor growth in 3 AR-positive PDX models derived from PCa patients, at least 2 of whom failed ADT and chemotherapy. Interestingly, the effect of CDK8/19 inhibition in one of these models was associated with the suppression of intratumoral blood supply, indicating a stromal effect of MKI
- <u>Tumor Regression & Cures:</u> Combining prolonged CDK8/19 inhibitor treatment with castration not only suppresses CRPC xenograft growth but also induces tumor regression and, in some cases, leads to cures. Combined CDK8/19 inhibition and castration lead to complete tumor regression in 40% of mice

IMPACT

Investigators Zi, PhD **CFCCC** Investments SHARED RESOURCE FUNDING PROGRAMS 2020 COE **Outcomes** PUBLICATION Li, Journal of Clinical Investigation, 2024 PMC11093614 **GRANTS** HT9425-24-1-0656

Results support the development of mediator kinase inhibitors as a new class of drugs for the treatment of CRPC that is resistant to currently available therapies

2024 Annual Core Research Facilities Survey

Excellent + Good (No scores below average received) Therefore 2021

SURVEY PROMOTION

completing the survey!

2024 Core Facilities Survey

UCI School of Medicine and the UCI Chao Family Comprehensive Cancer Center are partnering on a survey regarding core research facilities in the School of Medicine. Your answers are helpful and important; all responses will be factored in to optimize our research support structure. After answering a few basic questions, you will only be asked questions pertaining to the facilities and services used by you and the researchers under your supervision. This survey is anonymous. For questions, contact Claire Brainard Draper. Please complete the survey by May 10, 2024.

Complete Survey

Annual Core Research Facilities Survey

RESPONSIVENESS

Selected 2024 Publications

CFCCC INVESTIGATOR(S)	PROGRAM	JOURNAL	YEAR
Marcus Seldin, PhD Nicholas Pannunzio, PhD Selma Masri, PhD	SPT	Science Advances	2024
Oliver Eng, MD Jennifer Valerin, MD Sora Tanjasiri, DrPH, MPH Marcus Seldin, PhD Selma Masri, PhD Angela Fleischman, MD, PhD Nicholas Pannunzio, PhD	BIDD SPT CC SPT SPT SPT SPT	Nature Communications	2024
Xioalin Zi, PhD	CC	The Journal of Clinical Investigation	2024
Xioalin Zi, PhD	CC	Clinical and Translational Medicine	2024
Edward Uchio, MD Xioalin Zi, PhD	CC	Molecular Cancer Therapeutics	2024
Vahid Yaghmai, MD Zhuoli Zhang, MD PhD	BIDD	American Journal of Cancer Research	2024
Aimee Edinger, VMD, PhD Cholsoon Jang, PhD Gina Lee, PhD	BIDD SPT SPT	iScience	2024